Evaluation of commonly used antimicrobial interventions for fresh beef inoculated with Shiga toxin-producing Escherichia coli serotypes O26, O45, O103, O111, O121, O145, and O157:H7.

نویسندگان

  • Norasak Kalchayanand
  • Terrance M Arthur
  • Joseph M Bosilevac
  • John W Schmidt
  • Rong Wang
  • Steven D Shackelford
  • Tommy L Wheeler
چکیده

Although numerous antimicrobial interventions targeting Escherichia coli O157:H7 have been developed and implemented to decontaminate meat and meat products during the harvesting process, the information on efficacy of these interventions against the so-called Big Six non-O157 Shiga toxin-producing E. coli (STEC) strains is limited. Prerigor beef flanks (160) were inoculated to determine if antimicrobial interventions currently used by the meat industry have a similar effect in reducing non-O157 STEC serogroups O26, O45, O103, O111, O121, and O145 compared with E. coli O157:H7. A high (10(4) CFU/cm(2)) or a low (10(1) CFU/cm(2)) inoculation of two cocktail mixtures was applied to surfaces of fresh beef. Cocktail mixture 1 was composed of O26, O103, O111, O145, and O157, while cocktail mixture 2 was composed of O45, O121, and O157. The inoculated fresh beef flanks were subjected to spray treatments by the following four antimicrobial compounds: acidified sodium chlorite, peroxyacetic acid, lactic acid, and hot water. High-level inoculation samples were enumerated for the remaining bacteria populations after each treatment and compared with the untreated controls, while low-level inoculation samples were chilled for 48 h at 4°C before enrichment, immunomagnetic separation, and isolation. Spray treatments with hot water were the most effective, resulting in mean pathogen reductions of 3.2 to 4.2 log CFU/cm(2), followed by lactic acid. Hot water and lactic acid also were the most effective interventions with the low-level inoculation on surfaces of fresh beef flanks after chilling. Peroxyacetic acid had an intermediate effect, while acidified sodium chlorite was the least effective in reducing STEC levels immediately after treatment. Results indicate that the reduction of non-O157 STEC by antimicrobial interventions on fresh beef surfaces were at least as great as for E. coli O157:H7. However, the recovery of these low inoculation levels of pathogens indicated that there is no single intervention to eliminate them.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Shiga toxin-producing Escherichia coli (STEC) O157:H7, O26, O45, O103, O111, O121, and O145, and Salmonella in retail raw ground beef using the DuPont™ BAX® system

Shiga toxin-producing Escherichia coli (STEC) and Salmonella are food-borne pathogens commonly associated with beef, and reliable methods are needed to determine their prevalence in beef and to ensure food safety. Retail ground beef was tested for the presence of E. coli O157:H7, STEC serogroups O26, O45, O103, O111, O121, and O145, and Salmonella using the DuPont™ BAX® system method. Ground be...

متن کامل

Detection of Shiga toxin-producing Escherichia coli in ground beef using the GeneDisc real-time PCR system

Escherichia coli O157:H7 and certain non-O157 Shiga toxin-producing Escherichia coli (STEC) serogroups have emerged as important public health threats. The development of methods for rapid and reliable detection of this heterogeneous group of pathogens has been challenging. GeneDisc real-time PCR assays were evaluated for detection of the stx(1), stx(2), eae, and ehxA genes and a gene that iden...

متن کامل

Efficacy of antimicrobial compounds on surface decontamination of seven Shiga toxin-producing Escherichia coli and Salmonella inoculated onto fresh beef.

Several antimicrobial compounds have been used in commercial meat processing plants for decontamination of pathogens on beef carcasses, but there are many commercially available, novel antimicrobial compounds that may be more effective and suitable for use in beef processing pathogen-reduction programs. Sixty-four prerigor beef flanks (cutaneous trunci) were used in a study to determine whether...

متن کامل

Isolation of Shiga toxin-producing Escherichia coli serogroups O26, O45, O103, O111, O121, and O145 from ground beef using modified rainbow agar and post-immunomagnetic separation acid treatment.

It is estimated that at least 70% of human illnesses due to non-O157 Shiga toxin-producing Escherichia coli (STEC) in the United States are caused by strains from the top six serogroups (O26, O45, O103, O111, O121, and O145). Procedures for isolating STEC from food products often use plating media that include antimicrobial supplements at concentrations that inhibit background microflora growt...

متن کامل

Chromogenic agar medium for detection and isolation of Escherichia coli serogroups O26, O45, O103, O111, O121, and O145 from fresh beef and cattle feces.

Non-O157 Shiga toxin-producing Escherichia coli (STEC) strains are clinically important foodborne pathogens. Unlike E. coli O157:H7, these foodborne pathogens have no unique biochemical characteristics to readily distinguish them from other E. coli strains growing on plating media. In this study, a chromogenic agar medium was developed in order to differentiate among non-O157 STEC strains of s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of food protection

دوره 75 7  شماره 

صفحات  -

تاریخ انتشار 2012